If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-854t^2+64000t-150000=0
a = -854; b = 64000; c = -150000;
Δ = b2-4ac
Δ = 640002-4·(-854)·(-150000)
Δ = 3583600000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3583600000}=\sqrt{11560000*310}=\sqrt{11560000}*\sqrt{310}=3400\sqrt{310}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64000)-3400\sqrt{310}}{2*-854}=\frac{-64000-3400\sqrt{310}}{-1708} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64000)+3400\sqrt{310}}{2*-854}=\frac{-64000+3400\sqrt{310}}{-1708} $
| z÷11.4=6 | | 4=6r | | 5(x-3)+3=-12 | | 5x÷-x÷6=14 | | -854t^2+64000-150000=0 | | a+.93=1.42 | | 3(x+1)+2=x+9 | | 4-1/2a=6-a | | q^2+49q+144=0 | | -12=6(x+6)+6x | | q^2+49+144=0 | | 5(3x+6)=-14+29 | | 5x÷2-x÷6=14 | | 1/2x-3/4=2/3x+2 | | -79=-y–6y–16 | | 3(x+4)=4x+12-6 | | F(x)=3(2)^2-3(2)+1 | | 40+3x=180 | | 2/5x+1/6=3/10x+1/3 | | q^2-7q+144=0 | | -8-4(6a-3)=7(a+5) | | 1/3x=1/24=0 | | h÷7.8=2 | | 22=374/x | | x-2=-5+2x+2x | | Y=3x+4x=8 | | 2x^2-7=121 | | q^2-49q+144=0 | | -1/3y+1/14=13/42 | | 10-4x=35+x | | 3y–4y=3 | | 2(2x-1)=5 |